Biological Molecules

Carbohydrates, Proteins, Lipids, and Nucleic Acids

Always contain Carbon (C) and Hydrogen (H)

Carbon is missing four electrons

Capable of forming 4 covalent bonds

- •Carbon can bind with hydrogen, nitrogen, oxygen, and itself!
- •Forms long chains, branched, rings, etc

Glucose, triglyceride/fat. Steroid (cholesterol), dissacharide

Proteins, Carbohydrates, Lipids etc are macromolecules

Many molecules joined together

•Monomer

Simple molecules

Polymer

Large molecules formed by combining monomers

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Polymer

carbohydrate (e.g., starch) protein nucleic acid

Monomer

monosaccharide amino acid nucleotide

Polymer Formation

Making big molecules from small molecules Requires water!

Dehydration Synthesis

•Water is produced as monomers are combined together

Dehydration Synthesis

Polymer Breakdown

Breaking big molecules into small molecules
Requires water!

Hydrolysis

Water breaks up the bonds in another molecule Requires enzymes (helping molecules)

Carbohydrates

Sugars (glucose, sucrose, starch)

Functions

1.Short term energy supply

Glucose produces ATP energy

2.Short term energy storage

•Gycogen is stored in the liver and muscles 3.Structure

Plant cell walls, insect exoskeletons

4. Cell Membrane markers

Cell "identity tags"

All carbs have the formula $C_n(H_2O)_n$

Monosaccharides

Monosaccharides have 3-7 carbon atoms
Ex) Glucose, ribose, galactose, fructose
Only one unit molecule
Pentose = 5 carbons
Hexose = 6 carbons
"ose" = carbohydrate

Disaccharides

Two molecules together
Ex) Maltose, lactose
Formed from dehydration synthesis

Polysaccharides

Many molecules together
Repeating glucose subunits
Examples:

1.Starch

Glucose storage in plants
Straight chains with little branching
Clycogen
Glucose storage in animals

•Many side chains

Polysaccharides

3. Cellulose

In plant cell walls
No branching – alternating oxygen positions for more structure
Cannot be digested - fiber

Lipids Fats, Oils, and Waxes

Functions

1.Long term energy storage
Pack energy into a small space
2.Insulation and Padding
Protects organs
3.Structure

Cell membranes

4.Chemical Messengers

Steroids

All lipids **do not** dissolve in water = hydrophobic

1.Fatty Acids

Chain of carbons ending in COOH

.Saturated Fatty Acids

Solid at room temperatureBad for health

.Unsaturated Fatty Acids

Contain double bondsLiquid at room temperature

Types

2. Triclycerides

Neutral Fats
Glycerol + 3 Fatty Acids
Can be saturated or unsaturated

Types 3.Phospholipids

Found in cell membrane
Same structure as triglyceride but one fatty acid is replaced with a phosphate group (polar)
Hydrophilic phosphate head,

hydrophobic fatty acid tail

Types 4.Steroids

Ringed structures made from cholesterol
Chemical messengers and form hormones
Ex) Cholesterol, Testosterone, Estrogen

Proteins

Functions

1. Structure

Keratin and collagen

2.Movement

Actin and myosin

3.Enzymes

Speed up chemical reactions

4. Transport

 Hemoglobin to carry oxygen in blood, proteins across cell membrane

Functions

5. Antibodies

Fight disease

6.Hormones

Maintain cell function – insulin

Structure of Proteins

Made of Amino Acids Amine (NH₃); Acid (COOH)

Structure of Proteins

Amino acids undergo dehydration synthesis to form
Dipeptides (2 amino acids)
Polypeptides (~3-20 amino acids)
Proteins (many amino acids)
Peptide bond is formed (polar)

Structure of Proteins (4 Levels)

Peptide bond

COO-

1.Primary Structure

Amino acid

+H3N

Linear sequence of amino acids

Structure of Proteins (4 Levels)

3. Tertiary Structure

.3D arrangement of amino acid chain

 Caused by covalent, ionic, and hydrogen bonding between R groups

Precise shape = specific function

4. Quaternary Structure

•More than one polypeptide chain grouped together

Denaturing Proteins

Cause protein to lose shape = not function
pH, temperature, chemicals and heavy metals disrupt bonds

•Ex) Heating an egg, adding vinegar to milk

Nucleic Acids

DNA and RNA

DNA

- Deoxyribonucleic acid
- Stores genetic information
- Codes for the order of amino acids in proteins
- Made of nucleotides
- 5 carbon sugar (deoxyribose)
- Phosphate
- •Nitrogenous bases
- Adenine (A)
- Thymine (T)
- .Cytosine (C)
- .Guanine (G)

DNA Structure

The sugar and phosphate bond to form a backbone
Bases stick out and hydrogen bond with a second strand – antiparallel
Strands wind around in a double helix

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

RNA

 Ribonucleic acid Helps in protein synthesis Made of nucleotides 5 carbon sugar (ribose) Phosphate Nitrogenous bases Adenine (A) .Uracil (U) .Cytosine (C) .Guanine (G) Single stranded

TABLE 2.1	DNA Structure Compared to RNA Structure	
	DNA	RNA
Sugar	Deoxyribose	Ribose
Bases	Adenine, guanine, thymine, cytosine	Adenine, guanine, uracil, cytosine
Strands	Double stranded with base pairing	Single stranded
Helix	Yes	No

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ATP

Adenosine Triphosphate Molecule of ENERGY Energy is released during hydrolysis

